High Resolution Numerical Analysis of Quasar Microlensing

THE UNIVERSITY OF SYDNEY Hugh Garsden | PhD Student Geraint Lewis | Supervisor School of Physics

Outline

- > Quasar Lensing
- > Quasar Microlensing
- > Numerical Simulation with Supercomputer code
- > Effect of lensing galaxy mass function
- > Broad-line region in quasar Q 2237
- > Water Maser in MG 0414
- > GPGPUs
- > Conclusions

Quasar Lensing Basics

- > Gravitational Lensing
- > Distant quasar (source), $z_{S} \sim 2$
- > Intervening galaxy (lens), $z_L \sim 0.5$
- > Multiple magnified images of the quasar are seen

Quasar Lensing Basics

Q 2237 – Einstein Cross z_L = 0.0394, z_S = 1.695

- > Can't resolve much/anything in the images
- > Work with
 - Number, Positions, Flux, Colours/Spectrum, others
- > Determined mostly by
 - The lens galaxy mass distribution
 - Observer/lens/source positions
 - These go into model
 - Model is (good) approximation

- > Use galaxy models like that are smooth
- What about the small-scale structure (stars, planets, black holes, dark matter) in the lens galaxy?
 - Do they have an effect?
- > Yes they can
- > Microlensing

Elliptical Galaxy, M87 Canada-France-Hawaii Telescope, J.-C. Cuillandre (CFHT), Coelum

- For each image add a *magnification* map into the model
 - Has to be numerically generated, by ray-tracing through lensing galaxy
 - Parameters for the map come from the lens model, but different for each image
- Map is representative of plane of quasar
- Map value (brightness) at point indicates relative magnification of quasar
- > Quasar moves (relatively)

0.6 pc

Microlensing Simulation Code

> Key representation of microlensing: magnification map

- Has been code to generate magnification map, Wambsganss, 1990s (others)
- Out of date, not sufficient for today's problems
- > Garsden-Lewis-Wambsganss (GLW) code
 - To limit of what's do-able
 - Parallel, distributed memory, disk caches, supercomputer
 - Huge number of stars in lensing galaxy (~ billion)
 - Huge number light rays (trillions) for ray-tracing
 - Huge resolution magnification maps (50000²)
 - If these not needed: faster, more data generation

Garsden & Lewis (2010). *Gravitational microlensing: A parallel, large-data implementation*, New Astronomy.

Data Processing

- > That's great, but how to process data?
 - New tools need for that as well
- > New, more compact data formats and data streaming
- > Parallel FFTs of huge maps on supercomputer using distributed memory
- > Parallel map analysis on GPGPU

- Mass distribution in lens has an effect on microlensing
- Can we tell smooth matter or small compact matter?
- Investigate "bi-modal" distributions of

Stars + smooth matter

Stars + small compact objects

 $10\% M_{\odot} (N = 1,133)$ 90% smooth $10\% M_{\odot} (N = 1,133)$ $90\% 10^{-3} M_{\odot} (N = 10,205,331)$ Lewis & Gil-Merino (2006) Quasar Microlensing: When Compact Masses Mimic Smooth Matter , ApJ

Smooth vs Very Small Compact Matter

To continue work with smaller masses need billion

10% M_{\odot} (N = 1,133) 90% 10⁻⁵ M_{\odot} (N = 1,020,533,131)

> Other mass distributions studied (not Salpeter)

Gravitational Nanolensing from Subsolar Mass Dark Matter Halos Chen J., Koushiappas S. M., 2010, ApJ, 724, 400

Masses down to 10⁻⁴ M. How low can be implemented go?

> Interactions with source size

Project 2: Water Maser in MG 0414

> Pick out quasar substructure

A gravitationally lensed water maser in the early Universe Impellizzeri et al. Nature 2008

- > Observed a single broadened peak
- > Assume: Maser spots near to or around an AGN iet

- > These have a velocity profile i.e. frequency profile
 - gradient vs. oriented ring

- Microlensing can change the spectrum of the source
- Huh? Gravitational lensing is achromatic
- > Need extended source
 - Different frequencies from different places
 - The different emission *locations* means get differential magnification
- Use microlensing to probe source emission

Simulated Microlensed Spectra

- > Patch fits the observation
- Garsden, Lewis & Harvey-Smith, The Water Maser in MG 0414+0534: The Influence of Gravitational Microlensing, MNRAS (to be resubmitted)

Project 3: Broad Emission Line Regions

- > Clouds close to quasar SMBH and accretion disk
- > Various models proposed
 - source shape
 - emission profile (flux and velocity)
 - orientation

http://heasarc.gsfc.nasa.gov/docs/ objects/agn/agn_model.gif

> But there's something else going on: core flash and reverberations

Micolensing of Reverberation

- > These isodelay surface travel through:
- Get spectrum of isodelay surface over time
- > Microlens it
- > Compare
 - Reverberation with no lensing
 - Reverberation including lensing
 - To see if lensing makes a difference
- > More to do
 - This for source (BLR) the source at 1 location

source shape
 emission profile

 (flux and velocity)
 orientation

Project 4: GPGPU¹

Represents the arrival in your PC of a new programming paradigm, in the same sense that multiple CPUs and multiple cores did

- > Multi-core CPUs gave you MIMD, parallel processes, parallel threads
- > GPUGPU gives you SIMD, parallel threads, lots
 - SIMD? => vectorize array addition

Two paradigms for the price of one!

> GPGPU provides tools to work with huge maps

Structure Function

- Consider path of length L, i.e time T
- > Question: What is the range of magnification?
- Examine all paths of this length to get statistics
- Do the same for paths of other lengths
- Massively parallel operation
- Massively parallel histogram generation and other stats

- > Possible to generate huge maps with billions of lens masses
 - Only I can do this
- > Opens up
 - New possibilities for very small masses, many in number
 - Very high resolution maps for statistics like structure function, and for high quality spectra
 - Can do thousands of the "old-size" simulations in reasonable time
- Future of supercomputer code is to incorporate GPGPU code into supercomputer code
 - Work in progress